Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Contribute to GitLab
Sign in / Register
Toggle navigation
S
Signal Denoise with AutoEncoder
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Mohammadreza
Signal Denoise with AutoEncoder
Commits
5192ebbc
Commit
5192ebbc
authored
Aug 14, 2021
by
Mohammadreza
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
im: add feature
parent
2f4ac40d
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
257 additions
and
0 deletions
+257
-0
extra.py
extra.py
+4
-0
qeeg_blink_removal.py
qeeg_blink_removal.py
+253
-0
No files found.
extra.py
View file @
5192ebbc
...
@@ -12,6 +12,10 @@ def design_filters(s_rate):
...
@@ -12,6 +12,10 @@ def design_filters(s_rate):
filters
[
'notch2'
]
=
[
output
[
0
],
output
[
1
]]
# b, a
filters
[
'notch2'
]
=
[
output
[
0
],
output
[
1
]]
# b, a
output
=
signal
.
butter
(
N
=
5
,
Wn
=
np
.
array
([
0.53
,
32
]),
btype
=
'bandpass'
,
analog
=
False
,
output
=
'ba'
,
fs
=
s_rate
)
output
=
signal
.
butter
(
N
=
5
,
Wn
=
np
.
array
([
0.53
,
32
]),
btype
=
'bandpass'
,
analog
=
False
,
output
=
'ba'
,
fs
=
s_rate
)
filters
[
'bandpass'
]
=
[
output
[
0
],
output
[
1
]]
# b, a
filters
[
'bandpass'
]
=
[
output
[
0
],
output
[
1
]]
# b, a
output
=
signal
.
butter
(
N
=
5
,
Wn
=
np
.
array
(
1
),
btype
=
'highpass'
,
analog
=
False
,
output
=
'ba'
,
fs
=
128
)
filters
[
'highpass_resample'
]
=
[
output
[
0
],
output
[
1
]]
# b, a
output
=
signal
.
butter
(
N
=
5
,
Wn
=
np
.
array
(
40
),
btype
=
'lowpass'
,
analog
=
False
,
output
=
'ba'
,
fs
=
128
)
filters
[
'lowpass_resample'
]
=
[
output
[
0
],
output
[
1
]]
# b, a
return
filters
return
filters
...
...
qeeg_blink_removal.py
0 → 100644
View file @
5192ebbc
import
numpy
as
np
import
dill
import
pickle
from
scipy
import
signal
,
stats
from
server.sl8
import
FileBase
from
extra
import
design_filters
file
=
'C:/Users/Mohammadreza/Desktop/1627280018_EyeOpen_1_Other_2.iec'
iec
=
FileBase
()
iec
.
load
(
file
)
iec_data
=
iec
.
get_brain_raw_data
()
sr
=
iec
.
get_brain_sample_rate
()
sc
=
iec
.
get_brain_sample_count
()
gain
=
iec
.
get_gain
()
filters
=
design_filters
(
sr
)
iec_data
=
np
.
array
(
iec_data
)
blink_remove
=
True
resample_rate
=
128
age
=
'35.0'
with
open
(
'D:/Infinite8/neuro-app/assets/data/normal_open.sarmad'
,
'rb'
)
as
in_strm
:
sarmad_file
=
dill
.
load
(
in_strm
)[
age
]
with
open
(
'D:/Infinite8/neuro-app/assets/data/svclassifier_new.pkl'
,
'rb'
)
as
fid
:
blink_svm
=
pickle
.
load
(
fid
)
class
OfflineQeegThread
:
def
__init__
(
self
,
data
=
None
,
sps
=
None
,
gain
=
None
):
self
.
data
=
data
self
.
sps
=
sps
self
.
gain
=
gain
def
run
(
self
):
try
:
self
.
preprocess
()
except
Exception
as
e
:
print
(
'Error'
,
e
)
def
preprocess
(
self
):
signals
=
np
.
array
(
self
.
data
)
signals
=
signals
[
0
:
21
,
:]
signals
=
signals
/
self
.
gain
signals
=
signal
.
detrend
(
signals
,
axis
=
1
)
signals
=
signals
[:,
2
*
self
.
sps
:
signals
.
shape
[
1
]
-
(
2
*
self
.
sps
)]
b
,
a
=
filters
[
'notch1'
][
0
],
filters
[
'notch1'
][
1
]
signals
=
signal
.
filtfilt
(
b
,
a
,
signals
)
b
,
a
=
filters
[
'notch2'
][
0
],
filters
[
'notch2'
][
1
]
signals
=
signal
.
filtfilt
(
b
,
a
,
signals
)
b
,
a
=
filters
[
'bandpass'
][
0
],
filters
[
'bandpass'
][
1
]
signals
=
signal
.
filtfilt
(
b
,
a
,
signals
)
if
blink_remove
:
blink_index
=
self
.
artifact_rejection
(
signals
[
0
,
:])
if
blink_index
:
for
item
in
blink_index
:
signals
[:,
item
[
0
]:
item
[
1
]]
=
np
.
nan
signals
=
signals
[:,
~
np
.
all
(
np
.
isnan
(
signals
),
axis
=
0
)]
self
.
resample
(
signals
)
def
artifact_rejection
(
self
,
data
):
blink_index_list
=
[]
for
j
in
range
(
0
,
data
.
shape
[
0
]
-
100
,
40
):
new_data
=
data
[
j
:
j
+
100
]
features
=
np
.
array
(
self
.
feature_extraction
(
new_data
))
temp
=
blink_svm
[
'scaler'
]
.
transform
(
features
.
reshape
(
1
,
features
.
shape
[
0
]))
state
=
blink_svm
[
'model'
]
.
predict
(
temp
)
if
state
:
blink_index_list
.
append
([
j
,
j
+
100
])
print
(
'Blink'
,
j
,
j
+
100
)
return
blink_index_list
@
staticmethod
def
feature_extraction
(
data_
):
var
=
np
.
var
(
data_
)
std
=
np
.
sqrt
(
var
)
rms
=
np
.
sqrt
(
np
.
mean
(
data_
**
2
))
skewness
=
stats
.
skew
(
data_
)
kurtosis
=
stats
.
kurtosis
(
data_
,
fisher
=
False
)
ptop
=
np
.
max
(
data_
)
-
np
.
min
(
data_
)
auc
=
int
(
np
.
trapz
(
data_
,
dx
=
1
))
zero_crossings
=
np
.
where
(
np
.
diff
(
np
.
sign
(
data_
)))[
0
]
return
[
var
,
std
,
rms
,
skewness
,
kurtosis
,
ptop
,
auc
,
len
(
zero_crossings
)]
def
resample
(
self
,
data
):
signals
=
data
.
transpose
()
new_rate
=
resample_rate
number_of_samples
=
round
(
signals
.
shape
[
0
]
*
float
(
new_rate
)
/
self
.
sps
)
resampled
=
np
.
zeros
((
number_of_samples
,
signals
.
shape
[
1
]))
for
ch
in
range
(
signals
.
shape
[
1
]):
resampled
[:,
ch
]
=
signal
.
resample
(
signals
[:,
ch
],
number_of_samples
)
self
.
remontage
(
resampled
,
'LE'
)
def
remontage
(
self
,
data
,
montage
=
'LE'
):
signals
=
data
.
T
N
=
signals
.
shape
[
0
]
I
=
np
.
eye
(
N
)
v_final
=
None
if
montage
==
'AR'
:
r_ave
=
np
.
ones
((
N
,
N
))
*
(
1
/
N
)
x_
=
(
I
-
r_ave
)
y_
=
signals
v_final
=
np
.
dot
(
x_
,
y_
)
elif
montage
==
'LE'
:
r_le
=
np
.
zeros
((
N
,
N
))
r_le
[:,
[
-
2
,
-
1
]]
=
0.5
x_
=
(
I
-
r_le
)
y_
=
signals
v_final
=
np
.
dot
(
x_
,
y_
)
self
.
filter
(
v_final
[
0
:
19
,
:])
def
filter
(
self
,
data
):
b
,
a
=
filters
[
'highpass_resample'
][
0
],
filters
[
'highpass_resample'
][
1
]
eeg_filtered
=
signal
.
filtfilt
(
b
,
a
,
data
)
b2
,
a2
=
filters
[
'lowpass_resample'
][
0
],
filters
[
'lowpass_resample'
][
1
]
eeg_filtered_2
=
signal
.
filtfilt
(
b2
,
a2
,
eeg_filtered
)
self
.
power
(
eeg_filtered_2
)
def
power
(
self
,
data
):
f
,
pxx
=
signal
.
welch
(
data
,
fs
=
resample_rate
,
window
=
signal
.
windows
.
tukey
(
2
*
resample_rate
,
sym
=
False
,
alpha
=
.17
),
nperseg
=
2
*
resample_rate
,
noverlap
=
int
(
resample_rate
*
0.75
),
nfft
=
2
*
resample_rate
,
return_onesided
=
True
,
scaling
=
'spectrum'
,
axis
=-
1
,
average
=
'mean'
)
self
.
calc_band_power
(
pxx
[:,
2
:
82
]
*
0.84
)
def
calc_band_power
(
self
,
data
):
power_abs_delta
=
np
.
sum
(
data
[:,
0
:
6
],
axis
=
1
)
power_abs_theta
=
np
.
sum
(
data
[:,
6
:
14
],
axis
=
1
)
power_abs_alpha
=
np
.
sum
(
data
[:,
14
:
22
],
axis
=
1
)
power_abs_beta
=
np
.
sum
(
data
[:,
22
:
48
],
axis
=
1
)
power_abs_high_beta
=
np
.
sum
(
data
[:,
48
:
58
],
axis
=
1
)
power_abs_gamma
=
np
.
sum
(
data
[:,
58
:
78
],
axis
=
1
)
power_abs_alpha1
=
np
.
sum
(
data
[:,
14
:
18
],
axis
=
1
)
power_abs_alpha2
=
np
.
sum
(
data
[:,
18
:
22
],
axis
=
1
)
power_abs_beta1
=
np
.
sum
(
data
[:,
22
:
28
],
axis
=
1
)
power_abs_beta2
=
np
.
sum
(
data
[:,
28
:
34
],
axis
=
1
)
power_abs_beta3
=
np
.
sum
(
data
[:,
34
:
48
],
axis
=
1
)
power_abs_gamma1
=
np
.
sum
(
data
[:,
58
:
68
],
axis
=
1
)
power_abs_gamma2
=
np
.
sum
(
data
[:,
68
:
78
],
axis
=
1
)
power_all
=
np
.
sum
(
data
[:,
0
:
78
],
axis
=
1
)
power_rel_delta
=
power_abs_delta
/
power_all
*
100
power_rel_theta
=
power_abs_theta
/
power_all
*
100
power_rel_alpha
=
power_abs_alpha
/
power_all
*
100
power_rel_beta
=
power_abs_beta
/
power_all
*
100
power_rel_high_beta
=
power_abs_high_beta
/
power_all
*
100
power_rel_gamma
=
power_abs_gamma
/
power_all
*
100
power_rel_alpha1
=
power_abs_alpha1
/
power_all
*
100
power_rel_alpha2
=
power_abs_alpha2
/
power_all
*
100
power_rel_beta1
=
power_abs_beta1
/
power_all
*
100
power_rel_beta2
=
power_abs_beta2
/
power_all
*
100
power_rel_beta3
=
power_abs_beta3
/
power_all
*
100
power_rel_gamma1
=
power_abs_gamma1
/
power_all
*
100
power_rel_gamma2
=
power_abs_gamma2
/
power_all
*
100
power_rat_dt
=
power_abs_delta
/
power_abs_theta
power_rat_da
=
power_abs_delta
/
power_abs_alpha
power_rat_db
=
power_abs_delta
/
power_abs_beta
power_rat_dhb
=
power_abs_delta
/
power_abs_high_beta
power_rat_ta
=
power_abs_theta
/
power_abs_alpha
power_rat_tb
=
power_abs_theta
/
power_abs_beta
power_rat_thb
=
power_abs_theta
/
power_abs_high_beta
power_rat_ab
=
power_abs_alpha
/
power_abs_beta
power_rat_ahb
=
power_abs_alpha
/
power_abs_high_beta
power_rat_bhb
=
power_abs_beta
/
power_abs_high_beta
#############################################################
u
=
sarmad_file
[
'abs'
][
'u'
]
s
=
sarmad_file
[
'abs'
][
's'
]
power_abs_delta_z
=
(
np
.
log10
(
power_abs_delta
+
0.35
)
-
u
[:,
0
])
/
s
[:,
0
]
power_abs_theta_z
=
(
np
.
log10
(
power_abs_theta
+
0.35
)
-
u
[:,
1
])
/
s
[:,
1
]
power_abs_alpha_z
=
(
np
.
log10
(
power_abs_alpha
+
0.35
)
-
u
[:,
2
])
/
s
[:,
2
]
power_abs_beta_z
=
(
np
.
log10
(
power_abs_beta
+
0.35
)
-
u
[:,
3
])
/
s
[:,
3
]
power_abs_high_beta_z
=
(
np
.
log10
(
power_abs_high_beta
+
0.35
)
-
u
[:,
4
])
/
s
[:,
4
]
power_abs_alpha1_z
=
(
np
.
log10
(
power_abs_alpha1
+
0.35
)
-
u
[:,
5
])
/
s
[:,
5
]
power_abs_alpha2_z
=
(
np
.
log10
(
power_abs_alpha2
+
0.35
)
-
u
[:,
6
])
/
s
[:,
6
]
power_abs_beta1_z
=
(
np
.
log10
(
power_abs_beta1
+
0.35
)
-
u
[:,
7
])
/
s
[:,
7
]
power_abs_beta2_z
=
(
np
.
log10
(
power_abs_beta2
+
0.35
)
-
u
[:,
8
])
/
s
[:,
8
]
power_abs_beta3_z
=
(
np
.
log10
(
power_abs_beta3
+
0.35
)
-
u
[:,
9
])
/
s
[:,
9
]
u
=
sarmad_file
[
'rel'
][
'u'
]
s
=
sarmad_file
[
'rel'
][
's'
]
power_rel_delta_z
=
(
np
.
log10
(
power_rel_delta
+
0.35
)
-
u
[:,
0
])
/
s
[:,
0
]
power_rel_theta_z
=
(
np
.
log10
(
power_rel_theta
+
0.35
)
-
u
[:,
1
])
/
s
[:,
1
]
power_rel_alpha_z
=
(
np
.
log10
(
power_rel_alpha
+
0.35
)
-
u
[:,
2
])
/
s
[:,
2
]
power_rel_beta_z
=
(
np
.
log10
(
power_rel_beta
+
0.35
)
-
u
[:,
3
])
/
s
[:,
3
]
power_rel_high_beta_z
=
(
np
.
log10
(
power_rel_high_beta
+
0.35
)
-
u
[:,
4
])
/
s
[:,
4
]
power_rel_alpha1_z
=
(
np
.
log10
(
power_rel_alpha1
+
0.35
)
-
u
[:,
5
])
/
s
[:,
5
]
power_rel_alpha2_z
=
(
np
.
log10
(
power_rel_alpha2
+
0.35
)
-
u
[:,
6
])
/
s
[:,
6
]
power_rel_beta1_z
=
(
np
.
log10
(
power_rel_beta1
+
0.35
)
-
u
[:,
7
])
/
s
[:,
7
]
power_rel_beta2_z
=
(
np
.
log10
(
power_rel_beta2
+
0.35
)
-
u
[:,
8
])
/
s
[:,
8
]
power_rel_beta3_z
=
(
np
.
log10
(
power_rel_beta3
+
0.35
)
-
u
[:,
9
])
/
s
[:,
9
]
u
=
sarmad_file
[
'rat'
][
'u'
]
s
=
sarmad_file
[
'rat'
][
's'
]
power_rat_dt_z
=
(
np
.
log10
(
power_rat_dt
+
0.7
)
-
u
[:,
0
])
/
s
[:,
0
]
power_rat_da_z
=
(
np
.
log10
(
power_rat_da
+
0.7
)
-
u
[:,
1
])
/
s
[:,
1
]
power_rat_db_z
=
(
np
.
log10
(
power_rat_db
+
0.7
)
-
u
[:,
2
])
/
s
[:,
2
]
power_rat_dhb_z
=
(
np
.
log10
(
power_rat_dhb
+
0.7
)
-
u
[:,
3
])
/
s
[:,
3
]
power_rat_ta_z
=
(
np
.
log10
(
power_rat_ta
+
0.7
)
-
u
[:,
4
])
/
s
[:,
4
]
power_rat_tb_z
=
(
np
.
log10
(
power_rat_tb
+
0.7
)
-
u
[:,
5
])
/
s
[:,
5
]
power_rat_thb_z
=
(
np
.
log10
(
power_rat_thb
+
0.7
)
-
u
[:,
6
])
/
s
[:,
6
]
power_rat_ab_z
=
(
np
.
log10
(
power_rat_ab
+
0.7
)
-
u
[:,
7
])
/
s
[:,
7
]
power_rat_ahb_z
=
(
np
.
log10
(
power_rat_ahb
+
0.7
)
-
u
[:,
8
])
/
s
[:,
8
]
power_rat_bhb_z
=
(
np
.
log10
(
power_rat_bhb
+
0.7
)
-
u
[:,
9
])
/
s
[:,
9
]
power_dict
=
{
'absolute power'
:
{
'delta'
:
power_abs_delta
,
'theta'
:
power_abs_theta
,
'alpha'
:
power_abs_alpha
,
'beta'
:
power_abs_beta
,
'high_beta'
:
power_abs_high_beta
,
'gamma'
:
power_abs_gamma
,
'alpha1'
:
power_abs_alpha1
,
'alpha2'
:
power_abs_alpha2
,
'beta1'
:
power_abs_beta1
,
'beta2'
:
power_abs_beta2
,
'beta3'
:
power_abs_beta3
,
'gamma1'
:
power_abs_gamma1
,
'gamma2'
:
power_abs_gamma2
},
'relative power'
:
{
'delta'
:
power_rel_delta
,
'theta'
:
power_rel_theta
,
'alpha'
:
power_rel_alpha
,
'beta'
:
power_rel_beta
,
'high_beta'
:
power_rel_high_beta
,
'gamma'
:
power_rel_gamma
,
'alpha1'
:
power_rel_alpha1
,
'alpha2'
:
power_rel_alpha2
,
'beta1'
:
power_rel_beta1
,
'beta2'
:
power_rel_beta2
,
'beta3'
:
power_rel_beta3
,
'gamma1'
:
power_rel_gamma1
,
'gamma2'
:
power_rel_gamma2
},
'power ratio'
:
{
'delta/theta'
:
power_rat_dt
,
'delta/alpha'
:
power_rat_da
,
'delta/beta'
:
power_rat_db
,
'delta/high_beta'
:
power_rat_dhb
,
'theta/alpha'
:
power_rat_ta
,
'theta/beta'
:
power_rat_tb
,
'theta/high_beta'
:
power_rat_thb
,
'alpha/beta'
:
power_rat_ab
,
'alpha/high_beta'
:
power_rat_ahb
,
'beta/high_beta'
:
power_rat_bhb
},
'z scored absolute power'
:
{
'delta'
:
power_abs_delta_z
,
'theta'
:
power_abs_theta_z
,
'alpha'
:
power_abs_alpha_z
,
'beta'
:
power_abs_beta_z
,
'high_beta'
:
power_abs_high_beta_z
,
'alpha1'
:
power_abs_alpha1_z
,
'alpha2'
:
power_abs_alpha2_z
,
'beta1'
:
power_abs_beta1_z
,
'beta2'
:
power_abs_beta2_z
,
'beta3'
:
power_abs_beta3_z
},
'z scored relative power'
:
{
'delta'
:
power_rel_delta_z
,
'theta'
:
power_rel_theta_z
,
'alpha'
:
power_rel_alpha_z
,
'beta'
:
power_rel_beta_z
,
'high_beta'
:
power_rel_high_beta_z
,
'alpha1'
:
power_rel_alpha1_z
,
'alpha2'
:
power_rel_alpha2_z
,
'beta1'
:
power_rel_beta1_z
,
'beta2'
:
power_rel_beta2_z
,
'beta3'
:
power_rel_beta3_z
},
'z scored power ratio'
:
{
'delta/theta'
:
power_rat_dt_z
,
'delta/alpha'
:
power_rat_da_z
,
'delta/beta'
:
power_rat_db_z
,
'delta/high_beta'
:
power_rat_dhb_z
,
'theta/alpha'
:
power_rat_ta_z
,
'theta/beta'
:
power_rat_tb_z
,
'theta/high_beta'
:
power_rat_thb_z
,
'alpha/beta'
:
power_rat_ab_z
,
'alpha/high_beta'
:
power_rat_ahb_z
,
'beta/high_beta'
:
power_rat_bhb_z
}}
print
(
power_dict
)
oqt
=
OfflineQeegThread
(
data
=
iec_data
,
gain
=
gain
,
sps
=
sr
)
oqt
.
run
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment